برهانی مقدماتی برای فرمول گرگوری- منگولی - مرکاتور

نویسندگان

سید محمد طباطبایی

چکیده

در این مقاله برهانی مقدماتی برای فرمول مشهوری که نشان می دهد مقدار سری همساز متناوب برابر با log2 است، ارائه می شود. اثبات بر مبنای مفاهیم ساده حساب دیفرانسیل و انتگرال است.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برهانی برای قضیه کیلی - همیلتن

در این نوشته، برهانی غیر از برهان استاندارد برای قضیه کیلی - همیلتن ارائه می شود که بر مبنای استفاده از سری های توانی صوری استوار است.

متن کامل

برهانی برای قضیه کیلی - همیلتن

در این نوشته، برهانی غیر از برهان استاندارد برای قضیه کیلی - همیلتن ارائه می شود که بر مبنای استفاده از سری های توانی صوری استوار است.

متن کامل

برهانی جدید برای قضیه‌ای کلاسیک در نظریۀ گروه‌های متناهی

قضیه ای کلاسیک در نظریۀ گروه ها می گوید اگر G یک 2-گروه متناهی باشد که تنها یک عضو مرتبۀ 2 دارد، آن گاه  G دوری است یا با یک ٢-گروه کواترنیون تعمیم یافته یکریخت است. هدف این نوشته، ارائۀ برهانی جدید برای این قضیه است.

متن کامل

برهانی ساده از قضیه رل برای هیات های متناهی

یکی از قضایای اساسی در حساب دیفرانسیل قضیه رل است: ریشه های مشتق یک تابع بین ریشه های آن تابع قرار دارد. یک نتیجه قضیه رل این است که اگر یک چندجمله ای با ضرایب حقیقی روی هیات اعداد حقیقی شکافته شود، آن گاه مشتق آن نیز چنین خواهد شد. از این رو می توانیم سوال کنیم که برای چه هیات های دیگری چندجمله ای ها از خاصیت رل پیروی می کنند. ما این پرسش را برای هیات های متناهی تنها با استفاده ار نتایج اساسی ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
فرهنگ و اندیشه ریاضی

ناشر: انجمن ریاضی ایران

ISSN 1022-6443

دوره سال 30

شماره شماره پیاپی 46 2011

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023